Tricomponent complex loaded with a mosquito-stage antigen of the malaria parasite induces potent transmission-blocking immunity.
نویسندگان
چکیده
The development of malaria vaccines is challenging, partly because the immunogenicity of recombinant malaria parasite antigens is low. We previously demonstrated that parasite antigens integrated into a tricomponent immunopotentiating complex increase antiparasitic immunity. In this study, the B domains of a group G Streptococcus (SpG) strain and Peptostreptococcus magnus (PpL) were used to evaluate whether vaccine efficacy is influenced by the type of immunoglobulin-binding domain (IBD) in the tricomponent complex. IBDs were fused to a pentameric cartilage oligomeric matrix protein (COMP) to increase the binding avidity of the complexes for their targets. The COMP-IBD fusion proteins generated (COMP-SpG and COMP-PpL and the previously constructed COMP-Z) bound a large fraction of splenic B lymphocytes but not T lymphocytes. These carrier molecules were then loaded with an ookinete surface protein of Plasmodium vivax, Pvs25, by chemical conjugation. The administration of the tricomponent complexes to mice induced more Pvs25-specific serum IgG than did the unloaded antigen. The PpL complex, which exhibited a broad Ig-binding spectrum, conferred higher vaccine efficacy than did the Z or SpG complexes when evaluated with a membrane feed assay. This study demonstrates that this tricomponent immunopotentiating system, incorporating IBDs as the B-lymphocyte-targeting ligands, is a promising technology for the delivery of malaria vaccines, particularly when combined with an aluminum salt adjuvant.
منابع مشابه
Immunization of mice with DNA-based Pfs25 elicits potent malaria transmission-blocking antibodies.
Immunological intervention, in addition to vector control and malaria chemotherapy, will be needed to stop the resurgence of malaria, a disease with a devastating impact on the health of 300 to 500 million people annually. We have pursued a vaccination strategy, based on DNA immunization in mice with genes encoding two antigens present on the sexual stages of Plasmodium falciparum, Pfs25 and Pf...
متن کاملRecombinant Pfs25 protein of Plasmodium falciparum elicits malaria transmission-blocking immunity in experimental animals
Pfs25 is a sexual stage antigen of Plasmodium falciparum that is expressed on the surface of zygote and ookinete forms of the parasite. Monoclonal antibodies directed against native Pfs25 can block completely the development of P. falciparum oocysts in the midgut of the mosquito vector. Thus, this 25-kD protein is a potential vaccine candidate for eliciting transmission-blocking immunity in inh...
متن کاملTransmission blocking immunity in Plasmodium vivax malaria: antibodies raised against a peptide block parasite development in the mosquito vector
One approach towards the development of a vaccine against malaria is to immunize against the parasite sexual stages that mediate transmission of the parasite from man to mosquito. Antibodies against these stages, ingested with the blood meal, inhibit the parasite development in the mosquito vector, constituting "transmission blocking immunity." Most epitopes involved in transmission-blocking im...
متن کاملDisruption of Plasmodium falciparum development by antibodies against a conserved mosquito midgut antigen.
Malaria parasites must undergo development within mosquitoes to be transmitted to a new host. Antivector transmission-blocking vaccines inhibit parasite development by preventing ookinete interaction with mosquito midgut ligands. Therefore, the discovery of novel midgut antigen targets is paramount. Jacalin (a lectin) inhibits ookinete attachment by masking glycan ligands on midgut epithelial s...
متن کاملInduction of Plasmodium falciparum transmission-blocking antibodies in nonhuman primates by a combination of DNA and protein immunizations.
Malaria transmission-blocking vaccination can effectively reduce and/or eliminate transmission of parasites from the human host to the mosquito vector. The immunity achieved by inducing an antibody response to surface antigens of male and female gametes and parasite stages in the mosquito. Our laboratory has developed DNA vaccine constructs, based on Pfs25 (a Plasmodium falciparum surface prote...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Clinical and vaccine immunology : CVI
دوره 21 4 شماره
صفحات -
تاریخ انتشار 2014